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Abstract 

Psoriasis is a common inflammatory skin disorder for which multiple genetic susceptibility loci have 

been identified, but few resolved to specific functional variants. In this study we sought to identify 

common and rare psoriasis-associated gene-centric variation. Using exome arrays we genotyped four 

independent cohorts, totalling 11,861 psoriasis cases and 28,610 controls, aggregating the dataset 

through statistical meta-analysis. Single variant analysis detected a previously unreported risk locus at 

TNFSF15 (rs6478108; p = 1.50×10-8, OR = 1.10), and association of common protein-altering 

variants at 11 loci previously implicated in psoriasis susceptibility. We validate previous reports of 

protective low-frequency protein-altering variants within IFIH1 (encoding an innate antiviral 

receptor) and TYK2 (encoding a Janus kinase), in each case establishing a further series of protective 

rare variants (minor allele frequency < 0.01) via gene-wide aggregation testing (IFIH1: 

pburden = 2.53×10
-7

, OR = 0.707; TYK2: pburden = 6.17×10
-4

, OR = 0.744). Both genes play significant 

roles in type I interferon (IFN) production and signalling. Several of the protective rare and low-

frequency variants in IFIH1 and TYK2 disrupt conserved protein domains, highlighting potential 

mechanisms through which their effect may be exerted. 
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Introduction 

Psoriasis is a common inflammatory hyperproliferative skin disorder with a significant genetic 

component to disease pathogenesis (1-3). It affects up to 2% of people worldwide, with affected 

individuals suffering high social and economic costs and increased morbidity and mortality (1, 4). 

Previous large-scale genome-wide association studies and meta-analyses have identified 63 loci that 

contribute to psoriasis susceptibility in populations of European origin (5-16). Recent studies have 

refined the understanding of the allelic architecture of psoriasis risk at several of these loci, including 

the major histocompatibility complex (MHC), through the detection of multiple independent 

secondary signals (8, 12, 17, 18). Many psoriasis risk loci harbour genes encoding components of 

disease-relevant biological processes, including innate and adaptive immune pathways and skin 

barrier function (2). Nevertheless, the precise molecular mechanisms through which the associated 

genetic variation confers psoriasis susceptibility remain uncertain for the majority of these signals 

(19). The identification of disease-associated protein-altering variation, including the effects of rare 

alleles, has the potential to illuminate the mechanisms underpinning the pathogenic process and to 

identify putative targets for therapeutic intervention. Notably in psoriasis, investigation of the 

protective common allele encoding a glutamine residue at position 381 of the interleukin-23 (IL-23) 

receptor has validated aberrant Th17 signalling as a key disease driver (20), consistent with the 

remarkable efficacy of therapeutics targeting this pathway (21). 

Potential roles for common and low-frequency protein-altering variants in psoriasis 

susceptibility have been investigated in the Han Chinese (22, 23) and European (8) populations, but 

until now the contribution of rare protein-altering alleles to the disease architecture has not been 

systematically explored in any population. Here we present the most comprehensive investigation to 

date of protein-altering variation in psoriasis risk in the European population. The analysis 

encompasses four independent exome array association studies, referred to here as the UK, Estonia, 

Germany and Michigan studies. These were combined through meta-analysis to total 11,861 psoriasis 

cases and 28,610 controls (Supplementary Table 1). Our analysis focused on genetic variation outside 

of the MHC region, in which the psoriasis-associated HLA-C*06:02 allele and independent secondary 
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signals have been the subject of extensive investigation elsewhere (17, 18, 24-26). After quality 

control (QC), 167,587 single nucleotide variants (SNVs) that were successfully genotyped in each of 

the four cohorts were investigated. This set included 155,870 variants located within protein coding 

regions (and associated splice sites) of the genome and a further 11,717 non-coding SNVs including 

many tagging previously reported disease-associated SNVs. The allele frequency spectrum of the set 

of genotyped variants is skewed towards rare and low-frequency variants (Supplementary Table 3). 

 

Results 

Single marker association testing was performed in each of the four case-control cohorts using a linear 

mixed model with an empirically estimated relatedness matrix to control for population structure (27), 

and results were aggregated across studies via meta-analysis (Materials and Methods). Results for all 

variants achieving an association p-value p < 1×10
-5

 are summarised in Supplementary Table 5. 

 

Single marker association tests uphold established psoriasis susceptibility loci 

Of 67 previously reported independent psoriasis susceptibility signals across 63 loci, we were able to 

test for disease association at 24, either directly using the reported lead SNV or via a proxy (r2 > 0.8 

with the reported lead SNV). We observe significant disease associations at 23 (20 with genome-wide 

significance, p < 5×10
-8

, and three with p < 10
-4

; Supplementary Table 6). We find no evidence of 

association at the recently reported 13q14.11 locus that encompasses COG6 (10) (rs7993214: 

p = 0.0589; OR = 1.04). It should be noted that before QC the UK, Estonia, Germany and Michigan 

studies collectively included 7,885 psoriasis cases that were present in previously published analyses 

(6, 8, 12, 14) (Supplementary Table 1). As such, the associations that originate from these previous 

reports should not be considered independently replicated here. 

 

Previously unreported genome-wide association at one locus 

We detect genome-wide significant association at one further locus, mapping to TNFSF15 at 9q32. 

An association is observed with the intronic variant rs6478108 (p = 1.50×10
-8

; OR = 1.10; 
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Supplementary Table 5). TNFSF15, encoding a member of the tumor necrosis factor superfamily of 

cytokines, is primarily expressed in endothelial cells and has previously been implicated in 

susceptibility to Crohn’s disease (28). Although a previous study found nominal association between 

variants in this locus and psoriasis susceptibility in a Hungarian population (29), we establish 9q32 as 

a genome-wide significant susceptibility locus for the first time here.  

 

Established association signals map to protein-altering variants at 11 susceptibility loci 

Within psoriasis susceptibility loci, an ongoing challenge is to fine-map association signals to 

determine the underlying causal variants. Disease-associated protein-altering variants represent 

plausible candidates through which psoriasis risk is conferred. We searched for protein-altering SNVs 

with a consistent direction of effect across all four studies and exome-wide significant association 

(p ≤ 3.0×10-7). We found 19 such variants within 11 different loci, all of which were previously 

reported susceptibility loci (Table 1; Supplementary Table 5). These observations extend the list of 

putative causal protein-altering alleles previously reported (8), most notably defining an additional 

candidate causal variant in ERAP1 (rs30187: p.K528R; p = 2.19×10-11) that is predicted to be 

damaging by PolyPhen-2 and has a CADD score of 20.6 (Supplementary Table 5). Furthermore, 

conditional analysis indicates that this variant can account for the observed association of rs27432, the 

lead SNV in this locus reported by Tsoi et al. (8) (Supplementary Table 5). 

 

Rare variant aggregation tests identify protective alleles for type I IFN genes 

Despite the substantial sample size of the current study, evaluation of the contribution of individual 

rare and low-frequency variants to psoriasis susceptibility is limited by statistical power to detect 

association. We therefore performed a series of gene-based tests, aggregating variants with low minor 

allele frequency (MAF). At each MAF threshold (0.01 or 0.05) we performed a burden test to detect 

an excess of rare alleles in cases or controls, and a SKAT test, which is designed to detect scenarios in 

which the effects of the aggregated variants have different direction or magnitude (30) (Materials and 

Methods). This testing regime identified two genes, IFIH1 and TYK2, with exome-wide significant 
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evidence of association (pgene < 2.5×10-6; Table 2). Both IFIH1 and TYK2 are located in loci 

previously implicated in common variant studies of psoriasis risk (5). 

In IFIH1, single marker association testing had identified two genome-wide significant 

psoriasis-associated protein-coding variants: the common rs1990760 (p.A946T; MAFcontrols = 0.38; 

p = 4.73×10-18; OR = 0.86) and the low-frequency rs35667974 (p.I923V; MAFcontrols = 0.02; 

p = 1.10×10
-15

; OR = 0.55). The latter contributes to the observed gene-based association of variants 

in IFIH1 with MAF < 0.05 (pSKAT = 1.19×10-20; pburden = 1.84×10-19), although we also observe 

evidence of association with a MAF threshold of 0.01 (pburden = 2.53×10-7; pSKAT = 6.02×10-5). This 

association remains when conditioning on both rs35667974 and rs1990760 (pconditional-burden = 1.36×10
-

8; pconditional-SKAT = 4.46×10-6), or on either individually (Supplementary Table 8). Examination of allele 

frequencies of individual rare and low-frequency coding SNVs in IFIH1 (Supplementary Table 10) 

reveals differences between cases and controls (p < 0.05) for six variants, each located within 

predicted functional domains of MDA5, the antiviral receptor encoded by this gene (Figure 1A). 

Notably, at each of these sites the minor allele is associated with decreased psoriasis risk, consistent 

with a previous study reporting two rare variant associations in this gene (31). 

In TYK2, which encodes one of the Janus family of kinases (32), we detect a gene-level 

association across variants with MAF < 0.05 (pSKAT = 6.34×10
-41

; pburden = 1.47×10
-39

). As with IFIH1, 

a strong single-variant association contributes to the aggregated signal (rs34536443: 

MAFcases = 0.023; MAFcontrols = 0.044; p = 1.72×10-42; OR = 0.51). Nevertheless, the variants with 

MAF < 0.01 also display evidence for disease association (pSKAT = 2.82×10
-4

; pburden = 6.17×10
-4

). 

There is a complex linkage disequilibrium (LD) structure between individual variants that have been 

previously reported at this locus (see Discussion). Our data suggest that the observed aggregate rare 

variant association is independent of the single marker associations (pconditional-SKAT = 7.21×10
-5

; 

pconditional-burden = 1.45×10-4), although a suitable proxy to facilitate conditional analysis with the 

common disease-associated intronic SNV rs280519 was unavailable for this analysis (5). The low-

frequency variant rs34536443 results in a substitution in TYK2’s kinase domain (p.P1104A), as does 

the only rare variant that is nominally associated in a single marker test (rs35018800: p = 0.0003; 

OR = 0.68; Figure 1B; Supplementary Table 10). 

Downloaded from https://academic.oup.com/hmg/article-abstract/doi/10.1093/hmg/ddx328/4093722/Exome-wide-association-study-reveals-novel
by guest
on 10 October 2017



8 

 

Since IFIH1 and TYK2 are located in known psoriasis susceptibility loci, we further 

scrutinized genes in all previously reported psoriasis susceptibility loci (Online Methods). We 

observed suggestive evidence for aggregated rare variant association at four further genes (IL23R, 

TNFAIP3, DDX58 and STAT2; Supplementary Table 9), the rare alleles displaying a protective effect 

in each case. Of these, we note that DDX58 (pburden = 3.01×10-5; pSKAT = 7.82×10-5 for MAF < 0.05) 

encodes RIG-I, a paralog of the MDA5 receptor (encoded by IFIH1) with a closely related function 

(33). The most strongly associated single marker in the region (rs657454; p = 2.16×10-5; OR = 1.08; 

MAFcontrols = 0.38) is not responsible for the observed association (pconditional-burden = 3.15×10-5; 

pconditional-SKAT = 3.07×10
-5

), although without a suitable proxy for conditional analysis we cannot fully 

rule out that the association is driven by the previously reported (8) common SNV rs11795343 

(r
2
 with rs657454 = 0.411). Furthermore STAT2 (pburden = 3.80×10

-5
; pSKAT = 9.48×10

-5
 for 

MAF < 0.05), like IFIH1, DDX58 and TYK2, also encodes an important component of the type I IFN 

signaling pathway. 

 

Discussion 

The systematic analysis of protein-altering variation reported here allows a thorough examination of 

the contribution of functional genetic mechanisms to psoriasis risk. For each locus in which we 

identified robustly associated single variants, the Supplementary Note provides a summary of 

evidence for functional involvement. For several loci (including those harbouring IL23R, IL13 and 

STAT2), the most strongly associated functional variants remain those previously suggested by Tsoi et 

al. (8). Findings at other loci (1q21.3, 6q21, 16p11.2, 20q13.13) offered less clear interpretation but we 

did not find sufficient evidence to reject existing disease models involving candidate disease genes 

LCE3B/C, TRAF3IP2, FBXL19 and RNF114, respectively (7, 34-36). We note the significant 

association of rs30187 in ERAP1 (p = 2.19×10
-11

; OR = 0.89), a missense variant that can explain the 

association signal at the previously proposed causal variant rs27044 (8) and which, unlike the latter 

SNV, is predicted to be deleterious by both PolyPhen-2 and CADD (Supplementary Table 5). We also 

identified one significantly associated missense variant in the recently reported 19q13.33 locus (16): 
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rs602662 in the gene FUT2 (p = 3.29×10-8; OR = 1.09). This gene encodes α-(1,2) fucosyltransferase, 

a Lewis antigen system enzyme that is central to determining an individual’s secretor status (37) and 

is associated with protection from and susceptibility to certain viral, bacterial and fungal infections 

(38-40). 

TYK2, as a Janus kinase, is widely expressed and facilitates a broad range of intracellular 

signaling processes (32). It provides another link between psoriasis-associated innate and adaptive 

immune pathways, having been shown, for example, both to mediate Th17 cell responses to IL-23 

signaling and Th1 responses to IL-12 signaling, and to regulate type I interferon (IFN) signalling (41, 

42). Our results highlight the complex LD structure at this locus, with protective associations at two 

previously identified independent missense variants which are each predicted to impair protein 

function (rs34536443 described earlier; rs12720356: p = 1.39×10
-16

; OR = 0.76; MAFcases = 0.068; 

MAFcontrols = 0.083) (5, 8). A third SNV, rs2304256 (p = 2.88×10
-23

; OR = 0.81; MAFcases = 0.243; 

MAFcontrols = 0.280), is in weak LD with both rs34536443 and rs12720356 (r2 = 0.107 and 0.290, 

respectively) and its association disappears when conditioning on either SNV (pconditional = 0.0559 and 

pconditional = 0.1063, respectively). Our data included no proxy SNV for rs280519, another independent 

psoriasis signal with which rs2304256 is also in moderate LD (r2 = 0.357). In other immune-mediated 

diseases, rs2304256 has been shown to represent a synthetic association due to neighbouring rarer 

variants including rs34536443 and rs12720356 (43, 44). It is notable that the observed association at 

TYK2 under the rare variant aggregation tests is driven by two protective alleles which disrupt 

TYK2’s kinase domain (Figure 1B). This may suggest that the catalytic activity of TYK2 helps to 

initiate and maintain the positive feedback loops that culminate in psoriatic inflammation. Indeed, our 

independently associated common SNV rs12720356 leads to the substitution p.I684S within the 

pseudokinase JAK-homology 2 domain (32, 42, 45), while conversely our likely synthetic association 

rs2304256 (p.V362F) impacts neither kinase domain. 

IFIH1 encodes the innate antiviral receptor MDA5, which detects and binds to double-

stranded RNA, promoting a pro-inflammatory type I interferon (IFN) response (46). Rare variants in 

IFIH1, including three of the six variants underlying our aggregation tests that exhibit nominal disease 

association, have previously been shown to be protective for type I diabetes (47), with evidence that 
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the associated rare alleles lead to a decrease in downstream IFNβ expression arising from impaired 

signal propagation (48). It is evident that this pathway is also relevant to psoriasis pathogenesis 

indicating potential shared mechanisms at this locus in these immune-mediated diseases. The most 

strongly associated rare variant is rs35667974, whose minor (C) allele exhibits a large protective 

effect (p = 1.10×10-15; MAFcases = 0.010; MAFcontrols = 0.020; OR = 0.55). This SNV is one of two 

independent rare variants at the IFIH1 locus previously implicated by Li et al. in psoriasis 

susceptibility (31), the other (rs10930046) having not been tested in our study. Our single marker tests 

identified one further protein-altering variant with exome-wide significant disease association, but the 

association at the common variant rs1990760 (reported previously (10)) is lost when conditioning on 

rs35667974 (pconditional = 0.9619), implying that it is a consequence of LD. It is also not predicted to be 

damaging (Supplementary Table 5), which suggests rs35667974 could represent the more likely 

functional variant at this locus. 

Several of the variants we report here exhibit some degree of effect size heterogeneity in our 

meta-analysis (Supplementary Table 5). Notably, many variants display only modest evidence for 

association in the Estonia cohort, likely driven by the relatively small sample size for this study 

(Supplementary Table 1). However, each of the variants has consistent direction of effect across all 

four studies and are consistent with established psoriasis susceptibility signals, and as such represent 

robust associations. 

The results of our meta-analysis contribute to our understanding of several mechanisms of 

psoriasis pathogenesis. However, it might have been anticipated that the large study size and exome-

wide genotyping coverage would result in more novel biological insights than was borne out in 

practice. We therefore examined how completely the 167,587 variants in our study covered the 

autosomal protein-altering variants (outside the MHC region and predicted to impair protein function) 

that are observed in 33,370 European whole-exome- or whole-genome-sequenced samples in the 

ExAC reference dataset (Supplementary Table 11). Of 14,123 common variants (MAF ≥ 0.05) in 

ExAC, 5,487 (38.9%) are absent from at least one version of the exome arrays used across our four 

studies. A further 1,564 (11.1%) were removed from the analysis during genotyping QC, meaning that 

7,072 (50.1%) were tested in our analysis. A similar proportion of low-frequency 
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(0.01 ≤ MAF < 0.05) and rare (0.001 ≤ MAF < 0.01) SNVs were tested. As expected, coverage of 

very rare variants with MAF below 0.001 was substantially sparser, the drop in coverage being more 

pronounced the lower the MAF (Supplementary Table 11). 

To assess the impact of this incomplete coverage on our ability to map established psoriasis 

susceptibility signals to functional variants, we searched for all SNVs that are in moderate LD with a 

previously reported association (r
2
 > 0.2) in 1000 Genomes European samples and predicted to impair 

protein function by at least one of SIFT, PolyPhen-2 and CADD (Supplementary Table 12). We found 

23 such variants, of which 11 (47.8%, consistent with overall coverage) were not tested in our meta-

analysis and are therefore potentially interesting candidate variants for future association testing. The 

12 variants which were tested include 8 with strong evidence of association (and present in Table 1). 

The remaining four variants are not exome-wide significantly associated with psoriasis susceptibility, 

but none are in strong LD with the corresponding established signal (r
2
 range 0.29-0.69; 

Supplementary Table 12). 

We note that the rare and low-frequency variants found to be associated in this study display 

broadly protective effects on psoriasis risk. We cannot exclude that this is due to selection bias, since 

the exome array design is based largely on variants observed in whole exome sequencing studies of a 

range of complex traits, which do not include psoriasis (http://genome.sph.umich.edu/wiki/

Exome_Chip_Design). This could limit the probability that the array includes rare variants associated 

with increased psoriasis risk, either individually or via gene-wide aggregation tests. 

Previously established risk loci account for around 28% of the estimated heritability of 

psoriasis (16). Based on the method of So et al. (49) we find that the newly reported association at 

TNFSF15 explains 0.23% of estimated heritability (50). Aggregated rare and low-frequency variants 

(MAF < 0.05) in IFIH1 account for 0.47% of estimated heritability (0.17% after conditioning on 

previously reported associations); for TYK2 we estimate 0.80% (0.06% after conditional analysis). 

While these figures do not substantially increase the cumulative proportion of heritability explained to 

date, they do highlight the possibility that some fraction of the residual unexplained heritability will 

be due both to many as yet unidentified psoriasis susceptibility loci and to rare variants at existing 

Downloaded from https://academic.oup.com/hmg/article-abstract/doi/10.1093/hmg/ddx328/4093722/Exome-wide-association-study-reveals-novel
by guest
on 10 October 2017



12 

 

loci. Further efforts to isolate such variants will require larger sample sizes and more comprehensive 

coverage of the full frequency spectrum of genetic variation. 

In summary, we establish genome-wide significant psoriasis associations at the TNFSF15 

locus and identify a series of alleles at established psoriasis loci with plausible evidence for causality 

based on predicted effects on protein structure and function. Our investigation of alleles at the low end 

of the frequency spectrum with variant aggregation tests has expanded our understanding of the allelic 

architecture of psoriasis risk at the IFIH1 and TYK2 loci. The observation that rare alleles that disrupt 

conserved domains within each gene have protective effects is compatible with the hypothesis that the 

common ancestral alleles of IFIH1 and TYK2 contribute to a robust immune response to pathogens, 

but this comes at the expense of increased risk of immune-mediated disease. Our findings support a 

central role for type I IFN signalling in psoriasis pathogenesis, consistent with clinical observations 

that type I IFN therapy can induce or exacerbate psoriasis symptoms (51, 52). They also highlight 

putative therapeutic mechanisms; the efficacy of other janus kinase inhibitors (53-55) suggest that 

TYK2 in particular may be a fruitful drug target. 

 

Materials and Methods 

Study samples and genotyping 

The meta-analysis includes four independent studies, referred to as the UK, Estonia, Germany and 

Michigan studies. In each study, all samples were collected from unrelated individuals of European 

ancestry after obtaining written informed consent. Enrolment of subjects in each study was approved 

by the ethics boards of the participating institutions, in accordance with Declaration of Helsinki 

principles. All cases had been diagnosed with psoriasis vulgaris by a dermatologist. DNA was isolated 

from blood using standard methods. 

UK data. Psoriasis cases (n = 1,971) were recruited as previously described (8). Further cases 

(n = 960) were recruited from centres in the UK via the Biomarkers of Systemic Treatment Outcomes 

in Psoriasis (BSTOP) cohort study (www.kcl.ac.uk/lsm/research/divisions/gmm/departments/

dermatology/Research/stru/groups/bstop/index.aspx) after research ethics approval (REC reference 
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11/H0802/7). Unselected population-based controls (n = 6,400) were obtained from the 1958 British 

Birth Cohort. Genotyping was performed using Illumina HumanExome-12 v1.1 BeadChip and 

Illumina HumanOmniExpressExome-8 v1.2 BeadChip for psoriasis cases, and Illumina 

HumanExome-12 v1.0 BeadChip for controls (Supplementary Table 1). 

German data. All German psoriasis cases (n = 2,928) were recruited through local outpatient 

services at either the Department of Dermatology at Christian-Albrechts-University Kiel, or the 

Department of Dermatology and Allergy at the Technical University of Munich. The psoriasis cases 

were genotyped using Illumina HumanExome-12 v1.1, HumanCoreExome-12 v1.1B or 

HumanCoreExome-24 v1.0A BeadChips. German healthy control individuals (n = 15,966) were 

obtained from the PopGen biobank, the KORA S4 survey (an independent population-based sample 

from the general population living in the region of Augsburg, southern Germany), the Heinz-Nixdorf 

Recall (HNR) cohort, Bonn, and the SHIP and SHIP-TREND cohorts (56) (from the Study of Health 

in Pomerania, a prospective longitudinal population-based cohort study in West Pomerania). German 

controls were genotyped using Illumina HumanExome-12 v1.0, HumanCoreExome-24 v1.0A or 

HumanOmniExpressExome-8 v1.2A BeadChips (Supplementary Table 1). 

Estonian data. All Estonian samples were provided by the population-based biobank of the 

Estonian Genome Center, University of Tartu. Subjects were recruited by general practitioners (GP) 

and physicians in the hospitals. Participants in the hospitals were randomly selected from individuals 

visiting GP offices or hospitals. Diagnosis of psoriasis on the basis of clinical symptoms was posed by 

a general practitioner and confirmed by a dermatologist (n = 1,459). At the time of recruitment, the 

controls (n = 3,167) did not report diagnosis of osteoarthritis, psoriasis, or autoimmune diseases. All 

Estonian samples were genotyped using Illumina HumanExome-12 v1.1 or HumanCoreExome-24 

v1.0 BeadChips (Supplementary Table 1). 

Michigan data. Psoriasis cases (n = 6,344) and unrelated, unaffected controls (n = 6,085) of 

European Caucasian descent were collected in North America and Sweden (Supplementary Table 1). 

The cohort was genotyped using the Affymetrix Axiom Biobank Plus Genotyping Array at the 

Affymetrix facility (Santa Clara, CA). In addition to the exome array content analysed in the present 
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study, the chip included genome-wide and customized content analysed as part of a concurrent 

GWAS meta-analysis (16). 

 

Genotype calling and quality control 

Initial genotype calling and QC was performed separately for each of the four studies. Subsequently a 

joint QC procedure was undertaken to ensure that consistent QC standards were adhered to 

(Supplementary Table 2). 

UK data. Genotype calling was performed separately for the three different chips using 

Illumina’s GenomeStudio Data Analysis software (samples clustered using GenTrain 2.0 algorithm). 

Sample QC was performed using PLINK (v1.07) (57) and R (58), with samples excluded based on 

call rate (< 0.95), suspected non-European ancestry, heterozygosity (±4 s.d. from the mean), array 

signal intensity (> 4 s.d. from the mean) and relatedness. SNVs were excluded due to call rate 

(< 0.99), deviations from Hardy-Weinberg equilibrium (p < 0.0001) and low GenomeStudio cluster 

separation score (< 0.4). We also excluded duplicate assays, tri-allelic variants and 

insertions/deletions from further analysis. zCall software (version 3) (59) was employed to improve 

genotype calling for samples and SNVs that passed the initial QC. Subsequently we excluded SNVs 

and samples having a revised call rate below 99% to give a total of 234,976 SNVs in 2,431 cases and 

5,892 controls. Genotype intensity cluster plots were manually inspected for the 5,000 SNVs found to 

have the lowest p-values in a preliminary association test (see below). Where appropriate, genotypes 

were manually “rescued” using Evoker (version 2.3) (60). 

German and Estonian data. We removed samples from the German and Estonian cohorts 

with high missingness (> 2%). SNVs were removed if they had low call rate (< 95%) or deviated from 

Hardy Weinberg equilibrium (p < 0.0001) across both cohorts combined. Triallelic variants, 

insertions, deletions and one of each pair of duplicated markers were excluded. Rare variant 

genotypes were called using the zCall algorithm after removing samples with a call rate < 95%. zCall 

was employed using default settings (59) for the German and Estonian cohorts separately. 

Michigan data. We removed samples with high missingness (> 2%), and markers with low 

call rate (< 95%) or that deviated from Hardy Weinberg equilibrium (p < 1×10
-6

). Additional QC steps 
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and rare variant calling using zCall were performed in Kiel as described above for the German and 

Estonian datasets. 

Joint quality control. All four datasets were filtered to exclude variants with call rate below 

99% and samples with missingness above 1%. We took forward for subsequent analysis only those 

SNVs that were present in all four datasets. We excluded SNVs where alleles did not match between 

datasets or where the minor allele was ambiguous (that is, symmetrical SNVs with MAF > 0.45 and 

disagreement between datasets). 

A subset of 32,403 independent SNVs was generated by excluding SNVs with MAF < 0.001 

and SNVs within 250 kb of a previously-published psoriasis susceptibility locus or in regions of long-

range LD as defined by Price et al. (61); and by using PLINK to perform LD-pruning (r2 threshold = 

0.2). Relationship inference was performed jointly across all samples based on this independent subset 

of SNVs, using KING (version 1.4) (62). For pairs of samples found to be related (second degree 

relative or closer; kinship coefficient > 0.0884), the sample with fewer missing genotypes was 

retained and the other excluded from further analysis. For each of the four datasets separately, 

principal component analysis (PCA) was performed based on the SNVs within the independent subset 

having MAF > 0.01 in that dataset (between 16,307 and 16,629 SNVs). In order to mitigate against 

population stratification we excluded PCA outliers from all four datasets (defined as samples lying 

> 6 standard deviations away from the mean for any of the first ten principal components) 

(Supplementary Fig. 1). 

Following an initial round of association testing (described below), genotype intensity cluster 

plots for all non-MHC variants with single variant association p-value < 10-5 or included in a gene 

achieving a p-value < 10-5 in any aggregation test were manually inspected (and if necessary, removed 

or manually corrected) in all four datasets using Evoker (60). All analysis was subsequently repeated 

using these final datasets to give the results presented in this article. Cluster plots have been checked 

in the final datasets for all variants and genes reported here. 
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Linkage disequilibrium 

All LD statistics reported in this work derive from 503 samples of European ancestry from 1000 

Genomes (phase 3) (63). Estimates of r
2
 and D’ were calculated using PLINK. 

 

Proxy markers for established psoriasis susceptibility variants 

We curated established genome-wide significant psoriasis susceptibility variants from the literature 

(5-17, 35, 64) (Supplementary Table 6). Where established psoriasis variants were not present in our 

study, we identified tested SNVs within 500 kb with which they are in LD (r2 > 0.8); of these, we 

used the SNV in strongest LD as a proxy for the established variant. 

 

Single marker association testing 

We used a linear mixed model (LMM) implemented in EMMAX (27) to test for association of single 

variants in each of the four studies. In each study population structure was controlled for using a 

genetic relatedness matrix derived from the set of 32,403 independent SNVs described above; to 

avoid confounding due to LD and known psoriasis association, we also estimated genomic inflation 

using the p-values of association for these SNVs. Evaluation of quantile-quantile (QQ) plots indicated 

that inflation was minimal (Supplementary Fig. 2), with median genomic control (λGC) values ranging 

from 1.005 to 1.048 across the four studies. We subsequently performed standard-error weighted 

fixed-effect meta-analysis using METAL (current version) (65) to obtain combined p-values. Since 

EMMAX does not guarantee the accuracy of effect size estimates for binary traits, we estimated odds 

ratios (ORs) separately. For this we used PLINK (v1.9; www.cog-genomics.org/plink/1.9/) (66) to 

perform logistic regression for each study with the first ten principal components as covariates, and 

the ‘meta’ package (67) in R for meta-analysis. We verified that the p-values generated under this 

method are consistent with our primary results generated by the LMM (Supplementary Fig. 3). 

Single variants were only considered significantly associated with psoriasis susceptibility if 

their direction of effect was consistent across all four studies and p-value of association was below the 

exome-wide significance threshold of 3.0×10-7 (corresponding to 0.05/167,587 variants tested). 
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Where significantly associated protein-altering variants were identified in established 

psoriasis susceptibility loci, we assessed the degree to which each protein-altering variant corresponds 

to established association signal. This was done by estimating LD between the protein-altering variant 

and the known associated variant, and where a suitable proxy for the known variant existed in our 

data, by performing (bidirectional) conditional association testing with the protein-altering variant. 

Conditional association p-values were generated using EMMAX and METAL as above, with the 

genotype of the SNV to be conditioned on included as a fixed covariate in EMMAX and with the 

same genetic relatedness matrices as the unconditioned analysis. 

 

Gene-based association testing 

We prepared genotype data for gene-based association testing using EPACTS (v3.2.3; 

http://genome.sph.umich.edu/wiki/EPACTS) to annotate variants. We used RAREMETALWORKER 

(v4.13.5) (68) to generate score statistics and covariance information based on individual markers in 

each study; population structure was controlled for using a genetic relatedness matrix derived from 

the set of 32,403 independent SNVs described above. We subsequently used rareMETALS2 (v0.1; 

http://genome.sph.umich.edu/wiki/RareMETALS2) to perform combined gene-level meta-analysis, 

for each gene including all variants annotated as protein-altering (nonsynonymous, stop-gain and 

essential splice site) and having MAF below a fixed threshold. These combined tests comprised the 

GRANVIL (69) (burden) test and SKAT (30) (variance component) test, using MAF thresholds of 

both 0.01 and 0.05. To correct for exome-wide testing we used a Bonferroni-corrected threshold of 

0.05/20,000 = 2.5×10-6 to classify genes as significantly associated with psoriasis susceptibility. 

Since RAREMETALWORKER and rareMETALS2 also provide single marker association 

test results we confirmed that meta-analysis p-values and effect sizes generated in this way are 

consistent with our primary results obtained as described above (Supplementary Fig. 4; 

Supplementary Table 4). 

ORs were estimated for gene-based tests by collapsing all included rare variants across each 

gene into a single genotype, and performing logistic regression in PLINK and meta-analysis using the 

R ‘meta’ package as for single marker association testing (described above). Since both genes 
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achieving exome-wide significance fell within established psoriasis susceptibility loci for which 

exome-wide significant single variants were identified by our earlier analysis, we tested for gene-level 

association signal that could be attributed to rare variants independently of these known single 

variants. This was done by repeating the gene-level association tests and conditioning on the 

associated single variants, using the conditional analysis function implemented in rareMETALS2 (and 

excluding from the set of variants to be aggregated any associated single variants with sufficiently low 

MAF to be otherwise included). 

We further investigated genes in all established psoriasis susceptibility loci. Our data included 

rare or low-frequency protein-altering variants in 412 genes located within 250 kb of a previously or 

newly reported single variant association. We checked these genes for GRANVIL and SKAT test p-

values below a threshold of 0.05/412 = 1.214×10
-4

. 

 

Variant effect 

We predicted variant effects using three in silico tools. We consider SIFT (70) scores below 0.05, 

PolyPhen-2 (71) estimated false-positive rate below 0.05 and scaled CADD (72) scores above 20 to 

indicate a predicted functional effect. For all variants, scores for all three prediction tools were 

generated via wANNOVAR (73). All amino acid substitutions described refer to the canonical protein 

sequence as defined by UniProt (74). 

 

Exome array coverage 

We collated variants included in the original exome array design from the online documentation 

(http://genome.sph.umich.edu/wiki/Exome_Chip_Design). Variants subsequently included on each of 

the genotyping arrays used were obtained from the relevant manufacturer (Illumina or Affymetrix; 

Supplementary Table 1). 

To estimate the coverage of protein-altering variants by the genotyping arrays we downloaded 

annotated ExAC variants (release 0.3.1) (75). Biallelic SNVs were extracted which included an 

annotation of moderate or high impact to at least one protein-coding transcript. We further filtered 

these variants to those with non-zero alternative allele count in 33,370 European samples based on 
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variant calls for at least 10,000 chromosomes. After excluding SNVs on non-autosomal chromosomes 

and those within the MHC region this resulted in 1,655,908 SNVs, of which 14,123 were common 

(MAF ≥ 0.05), 9,957 were low-frequency (0.01 ≤ MAF < 0.05), 32,029 were rare but not very rare 

(0.001 ≤ MAF < 0.01). The majority (1,599,799) had MAF below 0.001. 

 To assess coverage of potential causal variants in established non-MHC psoriasis 

susceptibility loci we searched for variants in 1000 Genomes European samples that are in moderate 

LD (r2 ≥ 0.2) with a previously reported association, as described above. This resulted in 17,215 

SNVs in total. To identify candidate exonic variants we extracted those which included a SIFT, 

PolyPhen or CADD annotation predicting impaired protein function. 
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Legends to Figures 

Figure 1 – Rare and low-frequency protein-altering variants in IFIH1 and TYK2 

Frequency of alternative allele in cases and controls across all four studies for rare and low-frequency 

variants, displayed by protein consequence. ** designates exome-wide significant association 

(p < 3.0×10-7); * designates nominally significant association (p < 0.05). Common protein-altering 

variants that we report to be associated are marked by red triangles. Variant effect predictions (by 

SIFT, PolyPhen-2 and CADD) are red where a substitution is predicted to be damaging, white where 

it is not, and grey where no prediction was possible. SNV = single nucleotide variant; ESS = essential 

splice site; AA pos = amino acid position; PP = PolyPhen-2. (a) IFIH1 variants (MDA5 protein): 

CARD = caspase activation recruitment domain; Hel = helicase domain. (b) TYK2 variants: FERM = 

4.1/ezrin/radixin/moesin domain; SH2-like = Src homology 2-like domain; JH2 = JAK-homology 2; 

Prot. kin. JH1 = protein kinase JAK-homology 1. 
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Tables 

Table 1 – Exome-wide significant protein-altering variants 

AAF = alternative allele frequency; OR = estimated odds ratio; variant effect prediction: S = predicted “Damaging” by SIFT; P = predicted “probably 

damaging” by PolyPhen-2; C = CADD score > 20. 

Locus 

Protein-

altering 

SNV 

hg19 

position 
Ref/Alt Gene Consequence 

Variant 

effect 

prediction 

AAFcase AAFcont 
OR 

(95% CI) 

Meta-

analysis 

p-value 

Corresponding 

established 

signal 

1p31.3 rs11209026 67705958 G/A IL23R R381Q P, C 0.046 0.062 
0.719 

(0.667 - 0.774) 
2.00×10

-18
 rs9988642 

1q21.3 

rs1332500 152692074 G/C C1orf68 S26T  0.376 0.348 
1.123 

(1.086 - 1.161) 
1.07×10-12 rs6677595 

rs873775 152692472 A/C C1orf68 T159P  0.376 0.348 
1.123 

(1.086 - 1.161) 
1.11×10

-12
 rs6677595 

2q24.2 

rs1990760 163124051 C/T IFIH1 A946T  0.647 0.618 
1.161 

(1.122 - 1.200) 
4.73×10

-18
 rs1990760 

rs35667974 163124637 T/C IFIH1 I923V P 0.010 0.020 
0.548 

(0.473 - 0.634) 
1.10×10

-15
 rs1990760 

5q15 

rs27044 96118852 G/C ERAP1 Q730E  0.698 0.725 
0.869 

(0.839 - 0.900) 
1.28×10-13 rs27432 

rs30187 96124330 T/C ERAP1 K528R P, C 0.633 0.663 
0.886 

(0.857 - 0.916) 
2.19×10

-11
 rs27432 

5q31.1 rs20541 131995964 A/G IL13 Q144R  0.814 0.783 
1.170 

(1.123 - 1.219) 
3.59×10

-13
 rs20541 

6q21 

rs33980500 111913262 C/T TRAF3IP2 D19N S, P, C 0.108 0.075 
1.451 

(1.374 - 1.533) 
1.92×10

-39
 rs33980500 

rs13190932 111913070 G/A TRAF3IP2 R83W S 0.084 0.060 
1.404 

(1.320 - 1.492) 
1.34×10-28 rs33980500 

rs458017 111696091 T/C REV3L Y1156C  0.085 0.064 
1.313 

(1.236 - 1.395) 
1.37×10

-19
  rs33980500 

12q13.3 rs2066807 56740682 C/G STAT2 M594I  0.053 0.073 
0.729 

(0.681 - 0.781) 
1.56×10

-17
 rs2066808 

16p11.2 rs9938550 30999142 A/G HSD3B7 T250A  0.599 0.626 
0.882 

(0.853 - 0.911) 
4.74×10

-13
 rs10782001 

50
51
52
53
54
55
56
57
58
59
60
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19p13.2 

rs34536443 10463118 G/C TYK2 P1104A S, P, C 0.023 0.044 
0.506 

(0.458 - 0.558) 
1.72×10

-42
 rs34536443 

rs2304256 10475652 C/A TYK2 V362F  0.243 0.280 
0.814 

(0.784 - 0.844) 
2.88×10

-23
 

rs34536443 and 

rs12720356 

rs12720356 10469975 A/C TYK2 I684S S, P 0.068 0.083 
0.763 

(0.716 - 0.812) 
1.39×10

-16
 rs12720356 

rs1051738 10577843 C/A PDE4A A736E  0.166 0.184 
0.879 

(0.843 - 0.918) 
2.02×10-7 rs34536443 

19q13.33 rs602662 49206985 G/A FUT2 G258S P 0.511 0.467 
1.090 

(1.056 - 1.126) 
3.29×10

-8
 rs281379 

20q13.13 rs4647958 48600631 T/C SNAI1 V118A  0.141 0.125 
1.161 

(1.107 - 1.217) 
9.21×10

-10
 rs495337 

 

 

50
51
52
53
54
55
56
57
58
59
60
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Table 2 – Exome-wide significant gene-based associations 

MAF = minor allele frequency; OR = odds ratio estimated by collapsing test; nSNVs = number of SNVs included in test (this may vary between unconditioned 

and conditional analysis since SNVs to be conditioned on which are sufficiently rare are not included in the test statistic for the conditional test); cMAF = 

cumulative minor allele frequency of SNVs included in test. Exome-wide significant p-values (pgene < 2.5×10
-6

) are indicated in bold. 

 

Locus Gene 
SNVs 

conditioned on 

MAF < 0.01 MAF < 0.05 

pburden 

OR 

(95% CI) 

pSKAT nSNVs cMAF pburden 

OR 

(95% CI) 

pSKAT nSNVs cMAF 

Unconditioned analysis 

2q24.2 IFIH1 - 2.53×10
-7
 

0.707 

(0.626 - 0.799) 
6.02×10

-5
 24 0.0261 1.84×10

-19
 

0.620 

(0.564 - 0.682) 
1.19×10

-

20
 

25 0.0461 

19p13.2 TYK2 - 6.17×10
-4
 

0.744 

(0.626 - 0.885) 
2.82×10

-4
 17 0.0115 1.47×10

-39
 

0.593 

(0.549 - 0.641) 
6.34×10

-

41
 

19 0.0675 

Conditional analysis 

2q24.2 IFIH1 
rs35667974 and 

rs1990760 
1.36×10

-8
 

0.687 

(0.607 - 0.776) 
4.46×10

-6
 24 0.0261 1.36×10

-8
 

0.687 

(0.607 - 0.776) 
4.46×10

-6
 24 0.0261 

19p13.2 TYK2 

rs34536443, 

rs2304256 and 

rs12720356 

1.45×10
-4
 

0.728 

(0.611 - 0.868) 
7.21×10

-5
 17 0.0115 1.85×10

-5
 

0.790 

(0.701 - 0.890) 
6.53×10

-5
 18 0.0239 

50
51
52
53
54
55
56
57
58
59
60
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Abbreviations 

IFN – Interferon 

LD – Linkage disequilibrium 

MAF – Minor allele frequency 

MHC - Major histocompatibility complex 

PCA – Principal component analysis 

OR – Odds ratio 

QC – Quality control 

SNV – Single nucleotide variant 

 

 

Downloaded from https://academic.oup.com/hmg/article-abstract/doi/10.1093/hmg/ddx328/4093722/Exome-wide-association-study-reveals-novel
by guest
on 10 October 2017



  

 

 

Figure 1 – Rare and low-frequency protein-altering variants in IFIH1 and TYK2  
Frequency of alternative allele in cases and controls across all four studies for rare and low-frequency 

variants, displayed by protein consequence. ** designates exome-wide significant association (p < 2.9×10-

7); * designates nominally significant association (p < 0.05). Common protein-altering variants that we 
report to be associated are marked by red triangles. Variant effect predictions (by SIFT, PolyPhen-2 and 
CADD) are red where a substitution is predicted to be damaging, white where it is not, and grey where no 
prediction was possible. SNV = single nucleotide variant; ESS = essential splice site; AA pos = amino acid 
position; PP = PolyPhen-2. (a) IFIH1 variants (MDA5 protein): CARD = caspase activation recruitment 

domain; Hel = helicase domain. (b) TYK2 variants: FERM = 4.1/ezrin/radixin/moesin domain; SH2-like = 
Src homology 2-like domain; JH2 = JAK-homology 2; Prot. kin. JH1 = protein kinase JAK-homology 1.  
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